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A number of related methods for the evaluation of oscillatory integrals over infinite 
ranges which arise in physical applications are compared critically. Various modifica- 
tions are suggested and recommendations made for more efficient implementation. In 
particular, coefficients for Gaussian trigonometric quadrature formulas are listed and 
an alternative Chebyshev-polynomial-based oscillatory integrator is suggested. The 
use of these algorithms coupled with summation accelerators in the partition-extra- 
polation procedure is illustrated in a number of practical examples and comparisons are 
made with earlier work. 

1. PHYSICAL BACKGROUND AND INTRODUCTION 

Integrals of the form 

s 69 f(x) 44 dx, (1) 
where w(x) is an oscillatory function, appear in many physical applications, one 
of the most important cases being the evaluation of Fourier transforms in which 

w(x) = “,;; wx. 

Generalizations to other oscillatory weight functions such as 

w(x) = J&.0x) 

(2) 

also appear in many branches of applied mathematics. 
An example of the latter case arises in fluid mechanics in the study of particle 

interaction in a slow viscous flow, as described by Evans [l]. The force on one 
particle due to the presence of a second particle in a given underlying flow was 
considered. Asymptotic expansions of the fluid velocity vector and pressure were 
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made with the usual inner and outer regions. Each of the terms of the expansions 
satisfies a linear partial differential equation and the asymptotic matching is 
achieved by using generalized functions. As pointed out by Evans and Ockendon 
[2], the problem is then solvable by taking Fourier transforms. The inversion of 
these transforms gave rise to the integral 

I 
02 

xc-ly-l exp(--y sin a) 
0 

where 

x [2(c2 + x2) J,(x cos a) - 2x set aJ,(x cos a)] dx, 

y = (x2 + R2/4)l12 

(4) 

and 
c = Ry + R2/2. 

The angle (Y relates the particle position to the flow direction and R is the 
Reynolds number. At (Y = 0 the integral exists only in the mean but, in this case, 
an asymptotic estimate is available for small R which provides a check on the 
numerical values obtained. 

The second application arose in the field of molecular physics in the evaluation 
of certain two-center molecular integrals involving one-electron Green’s functions. 
These integrals arise from the variational functional 

which has been proposed by Hall and co-workers [3, 41 as an alternative to the 
usual minimum energy variational principle for atoms and molecules. The Green’s 
operator G is defined by 

G = (,u2E - T)-l, (6) 

E, V, and T denoting the energy of the system, the potential energy operator, 
and the electronic kinetic energy operator, respectively. The arbitrary trial function 
d(r) is adopted and TV is a scaling factor. 

For applications to two-center molecular systems, a particular class of potential 
energy weighted trial functions involving Slater-type orbitals has been suggested 
by Blakemore, Evans, and Hyslop [5]. 

The most complicated two-center integrals arising from the numerator of 
functional (5) are denoted, as in [5], by g& . For the suggested Slater-type trial 
functions, analytical reduction is achieved by utilizing the Fourier representation 

drl , r2> = -(49)-l f (s2 + k2)‘l exp[--is * (rr - r2)] ds (7) 
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for the one-electron Green’s function 

gtr19 r2) = 4277 I rl - 5 IF’ expt--k I rl - 5 I), (8) 

which corresponds to the operator G with p2E = -&k2. It is seen that the required 
integrals may be analytically reduced to the form 

In this equation, the summation extends over the usual combinations of the 
azimuthal quantum numbers and jr is the spherical Bessel function as defined 
by Abramowitz and Stegun [6]. The functions F&) and Z$(s) are related to the 
Fourier transform of the orbitals centered on nuclei A and B, respectively, and 
general expressions for these functions and the constants AI are quoted in [5]. 
These functions, although somewhat complicated in general form, are, in fact, 
rational functions of s so that the basic integrals required in Eq. (9) may be 
expressed generally as 

in which F(s) is a rational function and R denotes the internuclear separation. 
The simplest case treated in practice corresponded to I = 0 and the choice 

F(s) = Rsys2 + 1)--3 (11) 

which actually leads to the integral Z9 of Table I. 
For nonzero values of Z, the spherical Bessel function is written in the form 

j,(z) = q(z) sin z + Q(Z) cos z (12) 

and the two components of the integral are evaluated separately; expressions for 
the rational functions Us and Q(Z) are quoted in [6]. 

The numerical evaluation of such integrals is difficult, particularly for large 
values of w, and is further complicated by the infinite range. This precludes the 
conventional procedure of approximating f(x) by a polynomial, as adopted, for 
example, by Filon [7], Clendenin [S], and Flinn [9] in the evaluation of finite 
Fourier transforms. 

The procedure of integration between the successive zeros of w(x), thus con- 
verting the integral to an infinite summation, has been considered by several 
authors [l&13]. The use of a modified version of Euler’s transformation to 
accelerate the convergence of the resulting series of finite integrals has been 
investigated by Longman [14]. 
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More recently, Alaylioglu, Evans, and Hyslop [15] have suggested the use of 
the more general transformations of Shanks [16] to accelerate convergence in the 
partition-extrapolation method, coupled with a low order Gauss-Legendre 
quadrature prescription for the evaluation of the half-cycle integrals. A similar 
technique was adopted by Squire [17], who used the Aitken extrapolation formula 
together with a corrected Simpson’s rule. In a later paper Squire [18] compares 
the Aitken extrapolation approach, linked with a Gaussian quadrature rule, with 
the use of the E-algorithm for the acceleration as suggested by Chisholm, Gentz, 
and Rowlands [19]. Squire also suggests that the transformations of Levin [20] 
would be worth investigation as alternatives to those of Shanks. 

The extrapolation procedure has also been investigated by Gray and Atchison 
[21, 221, who introduce the G-transformation, which is a continuous analog of 
the Aitken transformation, and their results appear to confirm the equivalence. 
In a later paper, Gray, Atchison, and McWilliams [23] generalize the G-transform 
to give a continuous analog of Shanks’ transformations with the expected improve- 
ment in convergence. 

In contrast to these “integration, then summation” methods, Piessens and 
Haegemans [24], in a variation of the method of Hurwitz and Zweifel [lo], perform 
the summation of the function over the half-cycles first, using Euler’s transforma- 
tion for acceleration purposes, and then perform the integration using the trape- 
zoidal rule. This technique of summation followed by integration has also been 
adopted in a recent paper by Boris and Oran [25], who use the properties of the 
Fourier series of the summation. 

In a completely different approach, Pantis [26] has proposed an extension of 
Filon’s procedure to the infinite range. The range is split into [0, a] and [a, co]: 
Filon’s method is applied to the finite interval [0, a] and the contribution from 
[01, co] is estimated by utilizing an asymptotic expansion for sufficiently large 01. 

It is clear, therefore, that many variations of the basic procedures have been 
suggested, both with respect to the accelerator and the quadrature rule. It is of 
interest then to compare the efficiencies of these variations for the purpose of 
producing procedures which may be adopted in physical applications. 

In the present paper, the main sources of motivation are the examples outlined 
above and it is worth emphasizing the particular characteristics of these problems. 
In many cases, the function f(x) may be extremely complicated in form, and large 
numbers of such functions may have to be integrated for each value of the frequency 
w. This is particularly true in the quantum mechanical applications where the 
utilization of large basis sets for the variational trial function $ will give rise, on 
optimization of functional (5), to large matrices with elements containing terms 
like g,, of Eq. (9). Consequently, the accurate computation of these integrals with 
a minimum of function evaluations is of paramount importance and, indeed, is 
the main aim of the present work. The complexity of the functions considered 
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in these applications also means that estimation of the errors involved in the 
quadrature routines is extremely difficult. The difficulty is accentuated in cases 
where f(x) is only available numerically as, for instance, when variational func- 
tional (5) is incorporated in a Hartree-Fock self-consistent field model and the 
integrands are produced numerically by iteration. Consequently, the “experi- 
mental” alternative of carrying out convergence tests with quadrature prescriptions 
of increasing order has been adopted for selected values of the parameters. This 
process, of course, involves extra function evaluations but has been used consist- 
ently for all the quadrature methods considered and thus gives a basis for com- 
parison. In this connection, the value of quadrature routines which are adaptive 
is emphasized, since the earlier function evaluations may be reutilized. 

The implementation of the basis procedures is therefore considered in the light 
of these remarks and various modifications are suggested to increase efficiency 
by reducing the number of function evaluations. Comparisons are carried out 
between the various techniques for representative examples, particular emphasis 
being placed on the physical applications described. Other examples illustrating 
specific points have also been included. 

2. FORMULATION OF THE INTEGRALS 

In the case where the weight function W(X) is sin wx, integration is carried out 
between the zeros of w(x) and a linear transformation enables the integral 

S(w) = jomf(x) sin wx dx (13) 

to be written in the form 

w4 = 2 %hJ), (14) 
n-0 

where 

u,(w) = (-1)” w-1 I :f[(t + mr) CL+] sin t dr. (15) 

This subdivision prescription is to be contrasted with the formula of Pantis [26] 
where S(w) is expressed as 

x sin wx dx + w+(a) cos wa - c~+f’(a) sin WOI > 
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the asymptotic series being valid for large 01 provided f(a) and its derivatives fall 
off sufficiently rapidly. Note, in this connection, that the choice of 01 according to 
the relation 

001 = mn, (171 

where m is an integer, would seem to produce the more convenient asymptotic 
series 

(-I)” {df(a) - w-y(a) + *a*}, (18) 

the odd derivative terms being missing. However, if the object is to evaluate the 
integral for many values of w, such a restriction on 01 would require a new set of 
function evaluations for each w  and an 01 independent of w  would be preferable 
in such cases, as suggested by Pantis. 

The basic oscillatory integral over a finite range which is required in (15) and 
(16) may be expressed in general form as 

s b 

F(t) sin wt dt 
a 

and various methods are now described for its numerical evaluation. 
The most familiar method is due to Filon [7], in which the nonoscillatory part, 

F(t), of the integrand is fitted to a parabola over the range [u, b] and analytica 
evaluation then effected. This procedure was, in fact adopted by Pantis. Serious 
inaccuracies occur over the range [0, a] in the integral of Eq. (16) when LY. is large 
and Pantis found it necessary to subdivide the range uniformly and apply the 
Filon formula repeatedly, in the usual way. In most practical cases, however, 
the values of 01 required were so large that a prohibitively large number of function 
evaluations was necessary for a specified accuracy. Some improvement is possible 
by adopting a nonuniform subdivision procedure which takes the properties of 
F(t) into account. For instance, in one of his examples, Pantis concentrates the 
number of points in the regions where F(t) is varying most rapidly and has its 
largest magnitude. This procedure depends, of course, on knowledge of the proper- 
ties of F(t) and it is clear therefore that, if further economies are to be realized 
in general, more powerful integrators should be adopted. 

The higher order polynomial approximations, as suggested, for example, by 
Flinn [9], could be introduced and give rise to the family of quadrature formulas 
for the oscillatory integrals of the Newton-Cotes type, based on equally spaced 
ordinates. The automatic generation of these quadrature rules has been considered 
recently by Alaylioglu, Evans, and Hyslop [27]. The higher order formulas tend 
to be unstable numerically, like the normal Newton-Cotes formulas for non- 
oscillatory integrals, and their use is not recommended in practice. It appears 
preferable to use the lower orders [say, 2 (which is Filon’s prescription), 4, and 51 



358 BLAKBMORE, EVANS AND HYSLOP 

repeatedly by subdivision of the interval of integration, although extra cancellation 
errors may be introduced by this means. 

For this reason, an alternative scheme was investigated which is based on a 
suggestion by Bakhvalov and Vasil’eva [28] involving the expansion of F(r) over 
the normalized range of integration [- 1, I] in a series of Chebyshev polynomials 
T,(t). Bakhvalov and Vasil’eva originally adopted a quadrature procedure depend- 
ing on expansion in Legendre polynomials P,(t), the resulting formulas involving 
a finite series of spherical Bessel functions. Their suggestion for the use of 
Chebyshev polynomials was subsequently adopted by Piessens and Poleunis [29], 
who proposed a formula involving an infinite series of Bessel functions. An 
alternative formulation of this Chebyshev-based algorithm has been developed 
by Alaylioglu, Evans, and Hyslop 1301, a brief outline of which appears in Appen- 
dix A. The method is analogous to the treatment of the Newton-Cotes formulas 
adopted by these authors [27] and represents an extension of the well-known 
Clenshaw and Curtis method [31] to the case of oscillatory integrands. Some 
advantages of this alternative approach are: (i) The implementation is simple, 
(ii) the summation of an infinite series of Bessel functions is avoided, and (iii) 
the algorithm is adaptive. The stability of the method and limitations on its use 
are discussed at length in [30], where detailed comparisons with other methods 
have been made. Similar methods involving the use of Chebyshev polynomials 
which give rise to prescriptions involving finite series of Bessel functions have been 
developed by Patterson [32] and by Littlewood and Zakian [33]. It was found 
that a very significant saving in the number of function evaluations was realized, 
together with an increase in stability over the Newton-Cotes prescriptions, 
particularly the Filon procedure. 

It will be noted that, in all of the methods described above, the fitting of F(t) 
is independent of W. Consequently, these methods will be particularly efficient if 
a given integral is required for a number of values of w, since the same function 
evaluations may be utilized in each case. 

In contrast, the integral required in the subdivision algorithm (15) is confined 
to the range [0, 7r] but the ordinates required are clearly dependent on w. The 
techniques mentioned above (particularly the Chebyshev based procedure) may 
also be utilized for these integrals but additional methods which may be more 
suited to the subdivision procedure are also developed. 

In the previous work by Alaylioglu et al. [15] a low order Gauss-Legendre 
quadrature prescription [34] was used, coupled with uniform subdivision of 
the range. Since the integration was over one half-cycle only, it was not considered 
necessary to take the periodic nature of the weight function into account and 
consequently the quadrature prescription was applied to the entire integrand. 
Obviously, Gaussian quadrature formulas taking the oscillatory weight functions 
explicitly into account would be more efficient and these procedures have been 
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investigated by a number of authors including Miklosko [35], Piessens [36, 371, 
and Gautschi [38]. In most cases the formulas proposed are restricted to low 
order or the weight functions are not directly applicable to the subdivision algo- 
rithm of Eq. (15). For instance, Piessens [36] tabulates Gaussian coefficients for 
orders N = 2, 4, and 6 for the weight function sin x on the symmetrical interval 
[-n, ~1 with a more extensive tabulation up to order N = 18 appearing on 
microfiche in [37]. The tabulations presented by Gautschi are for the weight 
functions (1 + cos TX) and (1 + sin TX) on [ - 1, l] and clearly require Gauss- 
Legendre coefficients in addition. Also, coefficients for the weight function cos x 
on the interval [-n/2, n/2] are presented by Piessens [36]. These are reducible 
immediately to the forms required for sin x on [0, 7r] in Eq. (15) by simply adding 
77/2 to the abscissas. The tables in [36] are restricted to orders N = 1 to 4, although 
extensive tabulations are presented in [39]. Extensive multiple precision computa- 
tions of Gaussian quadrature coefficients for various weight functions have also 
been carried out recently by Alaylioglu, Evans, and Hyslop, the details of which 
will be reported elsewhere. This investigation included coefficients specifically 
for the integrals appearing in (15) according to the N-point relation 

I n F(t) sin t dt N f qf(tJ, 
0 i=l 

formulas of this type having also been considered by Price [40]. A short extract 
from these calculations is presented in Appendix B for convenient reference, 
attention being confined to the lower order results which were utilized in the 
practical calculations described here. 

It will be noticed that the formulation developed here applies to the sine trans- 
form of Eq. (13). However, the basic quadrature rule, Eq. (20), may also be applied 
directly to the cosine transform 

C(w) = jam f(x) cos wx dx, (21) 

since it is easily seen that C(w) may be expressed as 

where 

C(w) = co-1 
I oT’zf(t,‘w) cos t dt + 5 u,(w), (23 

PZ=O 

u,(w) = (-l)n+l w-1 s onf[(t + nrr + &r) w-l] sin t dt, (23) 

which is analogous to Eqs. (14) and (15). It will be necessary, of course, to evaluate 
the integral over [0, r/2] separately here, and a wide choice of accurate methods 



360 BLAKEMORE, EVANS AND HYSLOP 

is available, ranging from Gauss-Legendre quadrature to the Chebyshev method 
mentioned above, or even to a special Gaussian-trigonometric procedure for the 
weight function cos t on the interval [0,7r/2], some coefficients being presented in 
Appendix B. 

For the main integrals u,, , the Gauss-trigonometric prescription, Eq. (20), has 
proved most efficient in practice over a wide range of functions and has produced 
significant reductions in the number of function evaluations. However, it should 
be mentioned that the Chebyshev algorithm was only marginally less efficient in 
most cases tested and has the advantage of being adaptive in nature. 

Concentrating on the sine transform, Eq. (13), it is apparent that the subdivision 
algorithm, Eq. (15), in conjunction with the Gaussian formula, Eq. (20), produces 
the quadrature rule 

(24) 

The order N of the quadrature rule may well depend on the value of n and in 
most cases in practice, where the functions are falling off smoothly enough, it is 
possible to reduce N(n) as n increases. The infinite summation over n is then 
evaluated once the quadrature has been completed by utilizing the acceleration- 
extrapolation procedures described in the next section. 

For comparison purposes, the alternative procedure of summing first over the 
cycles, as adopted by Piessens and Haegemans [24] and by Boris and Oran [25] 
would produce the result 

where 

S(w) = IOn u(t, co) sin t dt, (25) 

cJ(t, 0) = f (-1)” w-lf[(t + n7r) w-l], (26) 
7X=0 

and give rise to the alternative form of the quadrature rule 

S(w) = a+ il wi go t-l)“f[k + n4 w-l]. (27) 

The acceleration algorithm is used here on the infinite summation before the 
integration. 

Note also that in cases where f(t) is an odd function (an even function for cosine 
transforms) it is possible to obtain a symmetrized u(t, 0) which produces a periodic 
integrand in Eq. (25). This is the procedure suggested by Piessens and Haegemans 
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[24]. The trapezoidal rule is particularly efficient for such integrals and is often 
superior even to the Gauss-trigonometric procedure. 

However, the method is limited to even or odd functions and, in the present 
work, the more general o(t, W) of Eq. (26) is adopted. This function does not have 
the periodic properties which enable the trapezoidal rule to be used effectively 
and it is preferable to use the integrators described in the Appendixes. 

It is important in practice that an efficient “accelerator” should be built into 
the summations in (24) or (27), particularly in the cases of slow convergence. In 
fact, an accelerator may, in certain instances, produce convergent sequences 
even when the original sequence diverges, as in the case of integrals which converge 
only in the mean [15]. Procedures such as that suggested by Boris and Oran [25] 
which do not use an acceleration technique would fail when applied to such 
problems. 

3. IMPLEMENTATION OF THE ACCELERATION TECHNIQUES 

The basic mechanism here is the application of the Shanks operators ek to 
accelerate the convergence of the sequences {An} (n = 0, 1,2,...) of partial sums 
given by 

A, = f uj e (28) 
j=O 

The sequence {&J (n = k, k + I,...) is produced according to 

the terms of the sequence being defined as the ratio of two determinants of order 
(k + 1) which may be expressed in the form 

The case k = 1 is readily seen to be equivalent to the well-known Aitken & 
extrapolation formula. 

The direct evaluation of these determinants may lead to numerical instability 
due to cancellation particularly for the higher order transformations and it was 
found to be preferable to use the equivalent E-algorithm or the implementation 
suggested by Longman [41] and used by Levin [20] in his comparisons. The 
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e-algorithm was also used by Chisholm, Genz, and Rowlands [19] for a somewhat 
different integration problem and is defined by 

C-1) = 0. 
En 7 (0) = A E, n, 

&D) = l ;2) + [&l) _ &q-l* (31) 

It can be shown [42] that the equivalence 

('Zk) 
EO = ek{AO, Al ,..-, Ad = &.k (32) 

is then true. This algorithm is well known to be stable. 
Also employed were the t-transformation and u-transformation of Levin. 

These were implemented via the v-transformation, which exhibits desirable 
properties of both the previous forms. The v-transformation is defined by 

where 

vkn = 2 c(j, k, n> An+& c(j, k, n>, 
j=O j=O 

(33) 

c(j, k, n) = (- l)j (:,o)‘-’ (a& - &+,) 

and 
a, = A, - A,-, . 

Following Levin, the diagonal transformation vkI was used. 

4. NUMERICAL COMPARISON AND DISCUSSION 

To summarize, the methods considered here are as follows, 

(i) Asymptotic expansion coupled with a finite interval oscillatory integrator 
as in Eq. (16). This is Pantis’ approach. 

(ii) Subdivision into half-cycles over each of which an integration is per- 
formed followed by evaluation of the resulting summation, usually with an 
accelerator incorporated. This is the “integration, then summation” algorithm 
of Eq. (14) and this category includes the work of Longman [14], Alaylioglu, 
Evans and Hyslop [I 51 and Squire [17]. 

(iii) Here the summation over the cycles is performed first (with or without 
an accelerator) and is followed by integration. This is the “summation, then 
integration” algorithm of Eq. (25) and includes the work of Hurwitz and Zweifel 
[lo], Piessens and Haegemans [24], and Boris and Oran [25]. 
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In each case, the original methods are modified by making use of the Gaussian 
trigonometric integrator of Eq. (20), coupled with the E-algorithm. For non- 
trigonometric weight functions, the Clenshaw-Curtis method was used for integra- 
tions over the half-cycles. 

A number of test integrals are considered for comparison purposes. These are 
usually taken from the original work on the methods described, although some 
further examples have been added to elucidate specific points. The integrals are 
listed in Table I together with the exact values obtained from [43]. 

TABLE I 

Test Integrals 

I 

m  
II = x(1 + xe)-l sin x dx = 0.5778636749... 

0 

s 

co 
zz = .r8 sin x dx = -0.07366791204... 

T 

s 

m 
Is = x-l sin x exp (-x/2) dx = 1.107148718... 

0 

I, = 
f 

m 
sech 2x cos 4x dx = 0.06775373785.. 

0 

z, = 
I 

m 
x-O.l sin x dx = 1.05.5472109... 

0 

co m 
IO F 

s 
xzsinlOOxadx = 4 

0 I 
x112 sin 100.x dx = 3.133285343... x lo-’ 

0 

s 

m 
1, = cos (l/x*) sin xB dx = 0.1969225576... 

0 
co 

Is = 
s 

x(1 + x*)-l Jo(x) dx = 0.4210244382... 
0 

I 

m 
Z@ = x(xX + l)-* sin x dx = 8.931901241... x lo-* (0 = 0.5) 

0 
= 1.173080162... x 10-l (a.8 = 3.0) 

= 9.805680900... x lo-” (a = 10.0) 

The number of function evaluations required to evaluate the test integrals to 
nine significant figures using each of the three methods is exhibited in Table II. 

In each case, an attempt was made to improve the integration procedure by 
reducing the total number of function evaluations required. Thus, Pantis in his 
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original work used Filon’s rule with 702 function evaluations on the subdivided 
range [0, LX] to give I1 correct to seven figures, whereas the Gaussian trigonometric 
integrator, Eq. (20), again with subdivision of the range, reduced this number 
to 140, although 420 evaluations were necessary to obtain nine significant figures. 
Similar reductions were achieved in the other examples. In most cases, the maxi- 
mum number of Gauss-trigonometric points required to produce the quoted 
accuracy was six or seven points per half-cycle. This number was rather larger 
for the earlier half-cycles in certain examples where the functions were varying 
rapidly or nonmonotonically for small x although, compensatingly, it was usually 
found that for the later half-cycles the order of the Gauss-trigonometric formula 
could be reduced, due to the ultimate smooth decay of the integrand. For 
methods (i)-(iii) the order N of the Gauss-trigonometric quadrature rule was 
systematically increased to produce convergence to the required accuracy, the 
final number of function evaluations required being quoted in Table II. Of course, 
extra function evaluations are required in performing these convergence tests but, 
since this technique has been adopted for all three methods, the quoted results 
form a basis for comparison. 

TABLE II 

Comparison of Methods (i), (ii), and (iii)” 

Number of function evaluations 

Integral (9 (ii) (iii) 

4 
4 
ZS 
14 
& 
la (tirst form) 
ZB (second form) 
17 
18 
z, (w = 0.5) 
18 (w = 3.0) 
ZQ (w = 10.0) 

420 
123 
35 
18 

fails 
- 

fails 
- 
- 

100 
119 
130 

53 143 
51 77 
39 loo 
23 21 
74 > 250 

112 - 
60 fails 

94 + 74 - 
80 - 
70 165 
68 72 
64 70 

a Method (i): Pantis-Eq. (16); method (ii): Integration, then summation-Eq. (14); method 
(iii): Summation, then integration-Eq. (25). Accelerator used for (ii) and (iii): +algorithm- 
Eq. (31); integrator used for (i), (ii), and (iii): Gauss-trigonometric-Eq. (20) [Clenshaw-Curtis 
for ZB (first form), Z, , ZJ. Accuracy required: nine significant figures. 
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It was also found that the Chebyshev-based algorithm of Appendix A was only 
slightly more expensive than the Gauss-trigonometric approach, requiring usually 
only about one extra function evaluation per half-cycle. Chebyshev procedures 
of this type have several useful properties which suggest that they merit considera- 
tion as practical alternatives. Thus, unlike the Gaussian-based result, the formula 
is adaptive in nature so that, if N is chosen to be 2” with k = 1, 2, 3,..., the earlier 
function evaluations may be reutilized for larger k. Again, it is possible to 
investigate the convergence of the Chebyshev fit to the functionf(x) by considering 
successive values of the coefficients ai of Eq. (A3), as described in the original 
paper by Clenshaw and Curtis [31]. Indeed, as pointed out by Piessens and 
Poleunis [29], in their discussion of the errors arising in quadrature formulas of 
this type, the integral of the Chebyshev expansion converges more rapidly than 
the expansion itself. In addition, since the Chebyshev fitting of f(x) is independent 
of w  the method is therefore ideally suited to cases where it is required to evaluate 
a given integral for a large number of values of w. In such instances, the Chebyshev 
integration method could be incorporated into the Pantis procedure to great 
effect. 

For weights other than sin wx and cos wx, the Gauss-trigonometric integrator 
is not applicable and the integrations over the half-cycles were performed using 
the Clenshaw-Curtis method [31], which is the limiting version of the Chebyshev- 
based algorithm of Appendix A. Of course, a Gaussian method such as Gauss- 
Legendre quadrature could be used here and would produce some slight reduction 
in the number of points quoted for integrals I, , Z, , and I8 . However, the properties 
of the Chebyshev procedure listed in the preceding paragraph, particularly 
adaptivity and the facility for continuous monitoring of the coefficients, are still 
applicable and suggest that the Clenshaw-Curtis method is a feasible practical 
procedure. Note also that for I, it was necessary, because of the 1/x2 singularity 
to consider the ranges [0, l] and [I, co] separately and to use the transformation 
t = l/x on the first range. 

The value of OL required in the method of Pantis is determined by truncating the 
asymptotic series in Eq. (16) to obtain the desired accuracy. Clearly, it is desirable 
to exclude any derivatives other than the first in practical applications and even 
the first derivative f’(x) may be extremely difficult to compute in certain instances. 
The values of 01 used for integrals II-Z4 were 300, 100, 30 and 10 respectively. 
Obviously, the Pantis method will be efficient if the terms of the asymptotic series 
fall off quickly enough for the choice of 01 to be reasonably small. The integration 
over [0, CX] may then be accomplished with a relatively small number of points. 
Thus, Z3 and I4 , where there is a predominantly exponential decay in f(x), require 
small 01 values and these integrals, especially Z4 , are evaluated extremely efficiently 
using Pantis’ method. However, in other integrals where the falloff in f(x) is slow, 
the required 01 value may be excessively large and may even result in failure of the 

934243-7 
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method, as in & . The same applies to the second form of la which is an example 
of an integral converging only in the mean. Integrals such as the first form of 1, 
and also 1, and Is are not amenable to the Pantis approach unless special asymptotic 
expansions are generated appropriate to the weight functions occurring. The 
integral 1, is the simplest example arising in the molecular integral applications 
referred to earlier and w  in this case represents the scaled internuclear separation 
for the H,+ ion. The function f(x) falls off reasonably rapidly here and the 01 values 
are small enough (68, 50, 89, respectively) for fairly efficient evaluation to be 
possible using Pantis. 

Method (ii), which is the modified version of the work of Alaylioglu et al. [15] 
and which involves integration over the half-cycles followed by summation, is 
clearly applicable to a wider class of problems than the other methods considered. 
With the modifications suggested, it proves highly competitive in terms of function 
evaluations, even when conditions are such as to favor the alternative techniques. 
For the most part, it makes little difference whether ek or elk is used as an accelerator 
and it was found that k = 5 was the largest order required and hence 11 half-cycle 
integrals was the maximum number needed for any of the integrals. In certain 
cases, the acceleration produced was extremely rapid and lower order transforma- 
tions were adequate. For instance, for I3 only 6 half-cycles were required and e2 
or e12 was sufficient. Again, for 1, where there is rapid exponential decay, only 
3 half-cycles are needed and the simple Aitken transformation e, is adequate 
here. This question is discussed in more detail with reference to a particular 
example in the next section. 

In order to decide a priori which transformation is required, it is necessary 
to have a detailed knowledge of the transient behavior [16] of the terms U, of the 
sequences. This information is not, in general, available and in practice the con- 
vergence is best investigated empirically by setting up a Shanks table. This table 
would use e, , e, , e3 ,..., and/or e, , er2, e13 ,..., until convergence was exhibited 
to a specified tolerance, the half-cycle integrals being evaluated only as required. 

The calculations based on method (iii) were introduced to see if there was any 
merit in performing the summations &St. The results indicate that this approach 
is usually less economical than method (ii) and, of course, since it relies on the 
periodicity of the trigonometric functions it is not always applicable and cannot 
be used, for example, on 1, and I, or the first form of Is . 

The method of Boris and Oran [25], which does not use an accelerator and 
employs essentially the trapezoidal rule for integration, appeared to converge 
extremely slowly for most of the integrals tested. The method requires the rapid 
decay of the Fourier transform of f(x) and it was only in cases like I4 where rapid 
exponential decay was exhibited that the method converged, although, even here, 
100 function evaluations were required for nine figure accuracy. The method, of 
course, does not apply to integrals like I7 or IS . It appears to be most useful in 
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those applications for which it was specifically designed, where there is rapid 
exponential decay, as exemplified by their test integral 

s 
m exp(-40 cash x) cos(39x) dx = 7.553050... x 10-2s. 

0 
(36) 

5. Two SPECIAL EXAMPLES 

In examples I,--I, there is no very significant variation in the number of function 
evaluations used when the angular frequency w  is changed, except possibly for 
very large and small values of w. In the partition-extrapolation methods, an 
increase in w  usually results in more cycles being required but there is a com- 
pensating reduction in the number of quadrature points because of the smoother 
behavior of the function f[(t + n) w-l]. On the other hand the efficiency of Pantis’ 
asymptotic formula, Eq. (16), increases with w. 

TABLE III 

Evaluation of Z1,,(w) to Nine Decimal Places 

w 
Exact 
value 

Number of function evaluations 

(9 (ii) (iii) 

0.5 2.4466748187 197 60 110 
1 1.9054722647 129 53 88 
2 1.1557273498 120 50 77 
4 0.4251683316 92 40 77 
8 0.0575402766 69 45 66 

16 0.0010538869 50 43 66 
32 o.OOOOOO3535 40 34 66 

The effect is demonstrated in Table III, which illustrates the relative efficiency 
of the various methods for varying angular frequency w  and introduces an addi- 
tional practical difficulty which also arises in the Boris and Oran integral, Eq. (36). 
The example chosen is that of Piessens and Haegemans [24] and Squire [17] 
namely, 

ZlO(W) = jam (x2 + BF’ cos wx dx = 7~ exp(--w/2) (37) 

for values of w  ranging from 0.5 to 32. 
The number of function evaluations using methods (i), (ii), and (iii) for an 

accuracy of nine decimal places is also displayed. 
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Once again method (ii) (integration, then summation) proves the most econom- 
ical, and a further demonstration of its efficiency is provided by comparing it with 
the earlier results of Piessens and Haegemans [24] and Squire [17]. To provide a 
meaningful comparison, the present method was implemented to produce equiva- 
lent accuracy (about eight decimal places) with the earlier calculations. The 
accuracy of the earlier work varied slightly for the different values of w  and also 
from Refs. [24] to [17]. Hence, the more stringent requirement of the two earlier 
works was applied in each case. The results are shown in Table IV and demonstrate 
a considerable increase in efficiency for the present method over the earlier results. 

TABLE IV 

Comparisons with Earlier Methods for 1,,(w) 

Number of function evaluations 

w PH’ S* (ii) 

0.5 780 186 45 
1 419 170 49 
2 223 170 47 
4 113 221 37 
8 120 269 38 

16 46 285 43 
32 53 - 34 

a Piessens and Haegemans [24]. 
b Squire [17]. 
c Present method: Eq. (14). 

A difficulty arises with integrals of this type which fall off extremely rapidly 
with increasing w. Thus, from Table III, the exact value of Z1, when w  = 32 is 

Z,,(32) = 3.535.. x lo-‘, 

whereas the magnitude of the first term in the sequence (28) is given by 

(38) 

u, N -0.24. (39) 

Hence, extremely severe cancellation will arise at the summation stage of the 
process, resulting in a loss of approximately six significant figures. This instability 
is inherent and is the reason why eight decimal places rather than eight significant 
digits are quoted in this particular example. The situation is worse for larger values 
of w. For example, 

Z1,,(lOO) = 6.059... x 1O-22 (@I 
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and about 20 figures will be lost through cancellation and multiple precision 
arithmetic would be necessary to obtain an accurate result. This defect applies 
also to the other methods mentioned in this paper and was also discussed by 
Boris and Oran in connection with their example (36). In practice, of course, an 
acceleration algorithm will simply provide the result zero to machine accuracy 
for integrals such as (40) and whether this is sufficient depends on the nature of 
the problem in question. Special quadrature rules can always be invented for 
specific integrals which incorporate the required behavior, such as the exp(--o/2) 
factor, but they have no practical use outside the special case considered. 

An additional test integral defined by 

Ill = Jrn x-l/” sin wx exp(--x - x-l) dx = -4.885538257... x 10-s (w = 10) 
0 

= -9.769643582... x lo-” (w = 50) 

= 8.994771670... x 1O-8 (w = 100) 

was considered to provide a more critical test of the extrapolation procedure. In 
most of the previous examples, the function f(x) decayed sufficiently rapidly for 
the terms uj in the sequence {A,} of Eq. (28) to exhibit monotonic decrease at an 
early stage (ZB being a notable exception). Consequently, the E-algorithm proved 
to be extremely efficient in accelerating convergence. The alternative v-transforma- 
tion proposed by Levin was even more efficient in these examples and generally 
induced convergence in one or two fewer half-cycles than the r-algorithm. For 
instance, when applying method (ii) to I, , the number of function evaluations was 
reduced from 51 to 47 and on I,, from 112 to 104. 

However, I11 provides a more stringent test of the accelerator used in that the 
half-cycle contributions increase initially before a monotonic decrease is attained. 
Thus, for w  = 10 the hall-cycle contributions have a maximum modulus in the 
third half-cycle and 14 terms are required to give nine figure accuracy using the 
E-algorithm with a total of 71 function evaluations. The v-transformation achieves 
the same accuracy in 12 half-cycles and 63 function evaluations. At w  = 50, the 
maximum modulus occurs in the thirteenth term and yet 16 half-cycles are suffi- 
cient to yield the maximum achievable accuracy of eight figures (with 11 figures 
working, see the note on I,,) with the E-algorithm using 67 function evaluations. 
Only one half-cycle is gained by the u-transformation here and 64 function evalua- 
tions are necessary. Finally, at w  = 100 the maximum occurs outside the sequence 
used in the accelerator but, even here, 17 terms give the expected six figure accuracy 
with the e-algorithm, taking 71 function evaluations. The v-transformation needs 
18 terms and 74 function evaluations. 

It appears that marginal advantage may be gained by using a transformation 
suited to a given sequence and that the u-transformation of Levin seems to have 
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a slight edge over the r-algorithm in most of the examples considered. However, 
both transformations are highly effective in practice and are equally easy to 
implement. 

6. CONCLUSIONS AND PHYSICAL APPLICATIONS 

It appears that the “integration, then summation” algorithm, Eq. (14), gives 
the best results over a wide range of examples. With the powerful Gauss-trigono- 
metric integrator or the alternative Chebyshev procedure described in the Appen- 
dixes, the method is very efficient in terms of function evaluations. The Chebyshev- 
based integrator is usually only slightly more expensive than the Gauss-trigono- 
metric procedure in terms of function evaluations. However, it has the advantage 
of being adaptive in nature and, in addition, the facility is able to monitor the 
Chebyshev coefficients ai as in the Clenshaw-Curtis method. These features may 
be important in practice since they may be balanced against the need to conduct 
empirical convergence tests to determine the order of the Gauss-trigonometric 
rule necessary for a given half-cycle integration. The well-known and easily 
implemented E-algorithm proves to be extremely efficient as an accelerator, 
although it should be mentioned that the v-transformation suggested by Levin 
is marginally more efficient in most of the examples considered and is also easy 
to implement. 

There are certainly examples where the asymptotic series approach of Pantis 
is quicker, but this method lacks speed in many other examples and it is not so 
widely applicable. It appears also that it is preferable to integrate first before 
summation rather than to reverse the procedure, both on grounds of efficiency 
in most of the examples considered and also because of wider applicability. The 
suggested method is easily generalized to nontrigonometric oscillatory integrands, 
whereas “summation, then integration” does not apply here and the method of 
Pantis would require a modified asymptotic expansion as well as a modified 
integrator. For these nontrigonometric weight functions, the Clenshaw-Curtis 
quadrature prescription [31], which is the limiting form of the procedure outlined 
in Appendix A, has been utilized for the half-cycle integrals although alternative 
methods such as Gauss-Legendre quadrature could also be adopted here. 

In the light of these conclusions, the two problems in mathematical physics 
which involved infinite range oscillatory integrals were considered further. For 
the problem in fluid mechanics with an integrand which has the Bessel functions 
J,, and J1 for its oscillatory parts, only the technique of “integration, then summa- 
tion” is appropriate. This method proved extremely efficient and gave results in 
complete agreement with the asymptotic estimates where these were available 
(01 = 0, R + 0). Moreover the difficulty at (Y = 0 was absorbed by the method 
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which deals directly with mean convergence, as mentioned in Section 2. Extensive 
convergence tests then indicated that accurate values of the integral could be 
obtained economically for all values of the Reynolds number and over the com- 
plete range of the angle 01 and the corresponding forces were then computed as 
detailed in [l]. 

Again for the problem in quantum mechanics, the “integration, then summation” 
algorithm was utilized and extensive convergence tests carried out together with 
comparisons with selected analytical test cases. It was found that values of the 
infinite integrals accurate to eight significant figures are obtainable over the com- 
plete range of internuclear separation R with a total of about 50 integration points 
required for each value of R. These results were then used to compute approximate 
energy levels for the hydrogen molecular ion H 2+, the results being presented in [5]. 

APPENDIX A: CHEBYSHEV BASED QUADRATURE FORMULAS FOR 
TRIGONOMETRIC INTEGRALS 

On normalizing the interval of integration to [ - 1, l] by means of a linear 
transformation, the basic Nth order quadrature rules may be expressed as 

I ’ f(x) cos wx dx N fn ai i D&. , 
-1 i=O r=O 

I ’ f(x) cos wx dx N f’ ai i Die,& . 
-1 i=O r=0 

(AlI 

The Clenshaw-Curtis coefficients a, arise on expanding f (x) terms of the Chebyshev 
polynomials Ti(x) and are given by 

ai = (2/N) iv f (q) cos(77p/N), 
j=O 

G43) 

with 
xj = COS(Tj/N), C44) 

the double primes denoting that the first and last terms in the summations are to 
be multiplied by 3. Dt,, represents the coefficients of x’ in Ti(x) and is easily 
computed from the recurrence relation 

Di,r = ~D~-L,-I - &--B.T , i > 2, r < i, 

the starting values being Do,, = 1, D,,, = 0, and D,,, = 1. 



372 BLAKEMORE, EVANS AND HYSLOP 

The monomial integrals 

c7=j1 x’ cos wx dx 
-1 

and 

ST = j1 xv sin wx dx 
-1 

are given by the finite series 

&= -~z!(;)~cos(wx+~z~)~~l 
1=0 

(‘46) 

(A7) 

(A9) 

when w  is large (w > 4 in practice). For smaller values of w  (w < 4), these series 
may become unstable for large values of N and should be replaced by the rapidly 
converging infinite series 

and 

c, = 2 i (- l)C (W7J/(21)!)(21+ r + 1)-l (AlO) 
l=O 

S, = 2 f (- 1)z (0~~~+~/(21+ 1)!)(21+ r + 2)-l 
Z=O 

(Al 1) 

for even and odd r, respectively. Truncation at 

I = [2w] + 10 6412) 

was found to yield double-precision accuracy (about 22 figures) for the monomials 
for w  < 4. 

The derivation and structure of these formulas are discussed in detail in [30], 
where the stability of the procedure with increasing N is also considered. The 
recommendation is that, if values of N much beyond N = 20 are to be used, 
double-precision arithmetic (22 figures) is necessary to evaluate the summations 
in (Al) and (A2); otherwise, single-precision (11 figures) arithmetic is adequate 
for most of the N values likely to be used in practice. 

Note that, if o is taken to be zero in (AlO), then the quadrature rule (Al) 
degenerates into 

s 
:f(x) dx N -2 f’ a&” - l), (A13) 

i=O 

which is the Clenshaw-Curtis formula [31] and which has been used in the present 
work for half-cycle integration for weight functions other than sin wx or cos wx. 
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APPENDIX B: GAUSSIAN FORMULAS FOR TRIGONOMETRIC INTEGRALS 

Gaussian quadrature coefficients are presented for the weight ifunction cos t 

on the intervals [-742,423 and [0,7~/2] according to the N-point formulas 

s 
n/2 

qF(tJ (see Table Bl), (Bl) 
-r/2 

F(t) cos t dt N g 
i=l 

s 

*I2 
F(t) cos t dt N z i&F(&) (see Table B2). GW 

0 i=l 

TABLEBl 
Gaussian Coefficients for cos t on [-r/2, n/2] 

Order Abscissas@ 

6 

7 

8 

9 

10 

6.8366739009 (- 1) 

0.0000000000 ( 0) 
1.0126012400 ( 0) 

4.3928746686 (--I) 
1.1906765639 ( 0) 

0.0000000000 ( 0) 
7.2598673794 (- 1) 
1.2964402800 ( 0) 

3.2385211421 (-1) 
9.1979066552 (- 1) 

1.3639113021 ( 0) 

0.0000000000 ( 0) 
5.6350196618 (-1) 
1.0555399634 ( 0) 
1.4094168673 ( 0) 

2.5649650742 (- 1) 
7.4346864788 (- 1) 
1.1537256455 ( 0) 
1.4414905402 ( 0) 

0.0000000000 ( 0) 
4.5980985871 (-1) 
8.8098166893 (-1) 
1.2267607474 ( 0) 
1.4649150799 ( 0) 

2.1234288707 (- 1) 
6.2214145705 (-1) 
9.8788528562 (- 1) 
1.2824218393 ( 0) 
1.4825294562 ( 0) 

Weights 

1.0000000000 ( 0) 

1.0883191839 ( 0) 
4.5584040804 ( 0) 

7.7592938187 (-1) 
2.2407061813 (-1) 

7.5221097881 (-1) 
5.0378251239 (- 1) 
1.2011199821 (-1) 

6.0581370012 (- 1) 
3.2479855138 (-1) 

6.9387748500 (-2) 

5.7554040031 (-1) 
4.5607388993 (-1) 
2.1353015976 (-1) 
4.2625750151 (-2) 

4.9199579660 (-1) 
3.3626447785 (--I) 
1.4420409203 (- 1) 
2.7535633514 (-2) 

4.6630641290 (-1) 
4.0043355770 (-1) 
2.4776782327 (- 1) 
1.0010472234 (- 1) 
1.8540690233 (-2) 

4.1271237189 (-1) 
3.1897307574 (-1) 
1.8407934564 (- 1) 
7.1311631869 (-2) 
1.2923574871 (-2) 

m Only positive abscissas shown. 
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TABLE B2 

Gaussian Coefficients for cos I on [0, a/2] 

Order Abscissas Weights 

8 

2 2.6587388056 (- 1) 
1.0351526093 ( 0) 

4 9.5669389197 (-2) 
4.5240902327 (-1) 
9.3185057672 (- 1) 
1.3564439600 ( 0) 

6 4.8337202961 (-2) 
2.4157438682 (-1) 
5.4241569594 (- 1) 
8.8888235763 (-1) 
1.2145625204 ( 0) 
1.4579176907 ( 0) 

2.9023729769 (-2) 
1.4828524405 (- 1) 
3.4531111152 (-1) 
5.9447696798 (- 1) 
8.6538380686 (-1) 
1.1263076093 ( 0) 
1.3470150460 ( 0) 
1.5015603622 ( 0) 

1.9324468537 (-2) 
9.9799217690 (-2) 
2.3672223071 (- 1) 
4.1797757474 (-1) 
6.2827073435 (-1) 
8.5057478126 (-1) 
1.0673430163 ( 0) 
1.2616021055 ( 0) 
1.4180367416 ( 0) 
1.5241034398 ( 0) 

10 

6.0362553281 (- 1) 
3.9637446719 (-1) 

2.3783071420 (-1) 
4.0265695524 (- 1) 
2.8681737949 (-1) 
7.2694951083 (-2) 

1.2233130510 (-1) 
2.4897643030 (-1) 
2.8666212347 (-1) 
2.1871922991 (-1) 
1.0250866521 (-1) 
2.0802246015 (-2) 

7.3908998095 (-2) 
1.6002993702 (--I) 
2.1444434342 (-1) 
2.1979581269 (-1) 
1.7581164478 (--I) 
1.0560448025 (--I) 
4.2485497299 (-2) 
7.9192864406 (-3) 

4.9349210907 (-2) 
1.0982195774 (- 1) 
1.5692441652 (-1) 
1.8142185381 (-1) 
1.7735663121 (-1) 
1.4671616225 (-1) 
1.0046661487 (-1) 
5.4074272678 (-2) 
2.0246477726 (-2) 
3.6224022909 (-3) 

The symmetric interval [--x/2, z/2] is chosen for convenience in tabulation. 
If the coefficients for the weight function sin t on [0, ~1 are required, as in Eq. (20) 
of the text, then 7r/2 is simply added to the abscissas ti , the weights wi remaining 
the same. Here, attention is confined to the lower order results which have been 
most used in the practical calculations described in the present paper. 



INFINITE RANGE OSCILLATORY INTEGRALS 375 

REFERENCES 

1. G. A. EVANS, “The Forces on a Small Sphere Due to the Interactive Inertia Effects of a 
Neighbouring Sphere,” Mathematics Research Report No. 21, Loughborough University, 
1973. 

2. G. A. EVANS AND J. OCKENWN, J. Aerosol Sci. 3 (1972), 237. 
3. G. G. HALL, J. HYSLOP, AND D. REES, Znr. J. Quantum Chem. 3 (1969), 195. 
4. G. G. HALL, J. HYSLOP, AND D. REES, Znr. J. Quantum Chem. 4 (1970), 5. 
5. M. BLAKEMORE, G. A. EVANS, AND J. HYSLOP, Theoret. Chim. Acta 40 (1975), 143. 
6. M. AL~AMOWITZ AND I. A. STEGUN, “Handbook of Mathematical Functions,” Dover, 

New York, 1965. 
7. L. N. G. FILON, Proc. Roy. Sot. Edinburgh 49 (1928), 38. 
8. W. W. CLENDENIN, Numer. Math. 8 (1966), 422. 
9. E. A. FLINN, J. Assoc. Comput. Mach. 7 (1960), 181. 

10. H. HURWITZ AND P. F. ZWEIFEL, M.T.A.C. 10 (1956), 140. 
11. H. HURWITZ, R. A. PFEIFER, AND P. F. ZWEIFEL, M.T.A.C. 13 (1959), 87. 
12. A. SAENGER, J. Math. Anal. Appl. 8 (1964), 1. 
13. G. BALBINE AND J. M. FRANKLIN, Math. Comp. 20 (1966), 570. 
14. I. M. LQNGMAN, Math. Comp. 14 (1960), 53. 
15. A. ALAYLIOGLU, G. A. EVANS, AND J. HYSLOP, J. Computational Phys. 13 (1973), 433. 
16. D. SHANKS, J. Mathematical Phys. 34 (1955), 1. 
17. W. SQUIRE, Electron. Lett. 9 (1973), 291. 
18. W. SQUIRE, Znt. J. Comput. Math. 5 (1975), 81. 
19. J. S. R. CHISHOLM, A. GENZ, AND G. A. ROWLANDS, J. Computational Phys. 10 (1972), 

284. 
20. D. LEVIN, Znt. J. Comput. Math. 3 (1973), 371. 
21. H. L. GRAY AND T. A. ATCH~XJN, SIAM J. Numer. Anal. 4 (1967), 363. 
22. H. L. GRAY AND T. A. ATCHISON, SIAM J. Numer. Anal. 5 (1968), 451. 
23. H. L. GRAY, T. A. ATCHISON, AND G. V. MCWILLIAMS, SIAM J. Numer. Anal. 8 (1971), 

365. 
24. R. PIE~~ENS AND A. HAEGEMANS, Electron. Lett. 9 (1973), 108. 
25. J. P. l3o~r.s AND E. S. ORAN, J. Computational Phys. 17 (1975), 425. 
26. G. PANTIS, J. Computational Phys. 17 (1975), 229. 
27. A. ALA~I~GLU, G. A. EVANS, AND J. HYSLOP, Comput. J. 18 (1975), 173. 
28. N. S. BAKHVALOV AND L. G. VASIL’EVA, 2. Vyc’sI. Mat. i Mat. Fiz. 8 (1968), 175. 
29. R. PIESSENS AND F. POLEUNIS, BIT 11 (1971), 317. 
30. A. ALAYLIOOLU, G. A. EVANS, AND J. HYSLOP, Comput. J., in press. 
31. C. W. CLENSHAW AND A. R. CURTIS, Numer. Math. 2 (1960), 197. 
32. T. N. L. PATTERSON, private communication (1974). 
33. R. K. LI~LEW~~D ANO V. ZAKIAN, J. Inst. Math. Appl., in press. 
34. P. J. DAVIS AND P. RABINOWITZ, “Numerical Integration,” 2nd ed., Blaisdell, Waltham, Mass. 

1975. 
35. J. MIKLOSKO, ZAMM 47 (1967), 470. 
36. R. PIESSENS, ZAMM 50 (1970), 698. 
37. R. PIESSENS, Math. Comp. 24 (1970), 478. 
38. W. GAUTSCHI, Math. Camp. 24 (1970), 245. 
39. R. PIESSENS, “Numerical Inversion of the Laplace Transform,” Ph. D. Thesis, University 

of Leuven, Belgium, 1970. 



376 BLAKEMORE, EVANS AND HYSLOP 

40. J. F. PRICE, “Discussion of Quadrature formulas for Use on Digital Computers,” Boeing 
Sci. Res. Lab. Report Dl-82-0052, 1960. 

41. I. M. LONGMAN, Znt. J. Comput. Math. 3 (1971), 53. 
42. P. WYNN, Math. Camp. 10 (1956), 91. 
43. I. S. GRALSHTEYN AND I. M. RYZHIK, “Tables of Integrals, Series and Products,” Academic 

Press, New York, 1965. 


